Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 1, 2026
-
Discussions of host–microbe interactions in mosquito vectors are frequently dominated by a focus on the human pathogens they transmit (e.g.Plasmodiumparasites and arboviruses). Underlying the interactions between a vector and its transmissible pathogens, however, is the physiology of an insect living and interacting with a world of bacteria and fungi including commensals, mutualists and primary and opportunistic pathogens. Here we review what is known about the bacteria and fungi associated with mosquitoes, with an emphasis on the members of theAedesgenus. We explore the reciprocal effects of microbe on mosquito, and mosquito on microbe. We analyse the roles of bacterial and fungal symbionts in mosquito development, their effects on vector competence, and their potential uses as biocontrol agents and vectors for paratransgenesis. We explore the compartments of the mosquito gut, uncovering the regionalization of immune effectors and modulators, which create the zones of resistance and immune tolerance with which the mosquito host controls and corrals its microbial symbionts. We examine the anatomical patterning of basally expressed antimicrobial peptides. Finally, we review the relationships between inducible antimicrobial peptides and canonical immune signalling pathways, comparing and contrasting current knowledge on each pathway in mosquitoes to the model insectDrosophila melanogaster. This article is part of the theme issue ‘Sculpting the microbiome: how host factors determine and respond to microbial colonization’.more » « less
-
van_Oers, Monique M (Ed.)ABSTRACT Systemic viral infection of insects typically begins with the primary infection of midgut epithelial cells (enterocytes) and subsequent transit of the progeny virus in an apical-to-basal orientation into the hemocoel. For insect-vectored viruses, an oppositely oriented process (basal-to-apical transit) occurs upon secondary infection of salivary glands and is necessary for virus transmission to non-insect hosts. To examine this inversely oriented virus transit in these polarized tissues, we assessed the intracellular trafficking of two model viral envelope proteins (baculovirus GP64 and vesicular stomatitis virus G) in the midgut and salivary gland cells of the model insect,Drosophila melanogaster. Using fly lines that inducibly express either GP64 or VSV G, we found that each protein, expressed alone, was trafficked basally in midgut enterocytes. In salivary gland cells, VSV G was trafficked apically in most but not all cells, whereas GP64 was consistently trafficked basally. We demonstrated that a YxxØ motif present in both proteins was critical for basal trafficking in midgut enterocytes but dispensable for trafficking in salivary gland cells. Using RNAi, we found that clathrin adaptor protein complexes AP-1 and AP-3, as well as seven Rab GTPases, were involved in polarized VSV G trafficking in midgut enterocytes. Our results indicate that these viral envelope proteins encode the requisite information and require no other viral factors for appropriately polarized trafficking. In addition, they exploit tissue-specific differences in protein trafficking pathways to facilitate virus egress in the appropriate orientation for establishing systemic infections and vectoring infection to other hosts. IMPORTANCEViruses that use insects as hosts must navigate specific routes through different insect tissues to complete their life cycles. The routes may differ substantially depending on the life cycle of the virus. Both insect pathogenic viruses and insect-vectored viruses must navigate through the polarized cells of the midgut epithelium to establish a systemic infection. In addition, insect-vectored viruses must also navigate through the polarized salivary gland epithelium for transmission. Thus, insect-vectored viruses appear to traffic in opposite directions in these two tissues. In this study, we asked whether two viral envelope proteins (VSV G and baculovirus GP64) alone encode the signals necessary for the polarized trafficking associated with their respective life cycles. UsingDrosophilaas a model to examine tissue-specific polarized trafficking of these viral envelope proteins, we identified one of the virus-encoded signals and several host proteins associated with regulating the polarized trafficking in the midgut epithelium.more » « less
An official website of the United States government
